0=16t^2+128t-192

Simple and best practice solution for 0=16t^2+128t-192 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+128t-192 equation:



0=16t^2+128t-192
We move all terms to the left:
0-(16t^2+128t-192)=0
We add all the numbers together, and all the variables
-(16t^2+128t-192)=0
We get rid of parentheses
-16t^2-128t+192=0
a = -16; b = -128; c = +192;
Δ = b2-4ac
Δ = -1282-4·(-16)·192
Δ = 28672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28672}=\sqrt{4096*7}=\sqrt{4096}*\sqrt{7}=64\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-64\sqrt{7}}{2*-16}=\frac{128-64\sqrt{7}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+64\sqrt{7}}{2*-16}=\frac{128+64\sqrt{7}}{-32} $

See similar equations:

| 15e+15=12e-27 | | 4y-12=2y+2 | | 2.1n−1.1n+2.2=6.6+0.7 | | 2(2-m)=-(m-2) | | 3^x=15 | | 2(x-1)-4=2(x+1)-3 | | 5u-4=7 | | v=3v-48 | | -2+5(b+3)=33-5b | | 14e+14=12e-28 | | 19+3x=-8x+7(x+1) | | z+40=10z+13 | | 2834=26(p+40) | | -11+3m-2+4=m-4+7 | | X*3x/2=486 | | 2834=40(p+26) | | 8v–6=-14 | | 2-7/3x=1-4/3x | | 4m+2=16+2m | | 1/2m+1/6=1/m | | -3x-4=-2-4x | | 20m= | | w/2–11=-9 | | 6z-57=5z-43 | | 2834=40p+26 | | 4z-83=z-5 | | 6/8=x/14 | | b+8=9b-48 | | 35+x=-5(x-6)-7 | | 3g–5=7 | | 2834=26p+40 | | 2(y-9)=4y-14 |

Equations solver categories